# REEF FISH POPULATIONS OF THE INVESTIGATOR GROUP, SOUTH AUSTRALIA: A COMPARISON OF TWO CENSUS METHODS 

by K. L. Branden*, G. J. Edgar $\dagger$ \& S. A. Shepherd*

## Summary

BravDi N, K. L., EDCar, G. J. \& Shepherd, S. A. (1986) Reeffish populations of the Investigator Group, South Australia: a companson of two census methods. Trans. R. Soc. S. Ausf. $110(2), 69-76,30$ May, 1986,

I ish populations were censused at Sive islands of eefs in the Investigator Group nainly in 1982 and 1983. The dissibution of abundance of species was examined by visual census along belt iransect lines and by recording the log abundances of fishes observed for a fixed time period in a variety of habitath.

The bele transeet method gives consistent and hence repeatable results although it dees not completels. sample the lish community. Log abundance counts yield more species per site because the divet eovers a larger area and presumably samples more habitats. The later method therefore seems most suitable for preliminary survey work.

Kry Worns: Reel fishes, census methods, Great Australian Bight.

## Introduction

The composition and structure of reef fish communities are an important aspect of reef ecnlogy, but have been largely neglected in southern Australian temperate waters. Most reefs are subject to spearlishing to varying extents (Johnson 1985a, b) so that there are few places where unexploited fish assemblages occur. Cruises to the


Investigator Group of islands in the eastern Great Australian Bight from 1982 to 1985 gave the opportunity to census reef fishes at places which are rarely fished (Fig. 1). Baseline information on these fish assemblages will be useful both in providing a general picture of the abundance of reel lishes in this poorly known region and as a comparison with mainland sites which are exploited by man. This


Fiig. 1. 1slands of the investigator Group with location of censuses

[^0]study supplements that of Kuiter (1983) who recorded 90 species of fish from this group of islands. Elsewhere, fish species'lists have been given by Last (1979) and Kuiter (1981) for the Kent Group in Bass Strait, and Edgar (1984) for other Tasmanian locations.

In this paper we use two visual census methods to provide data on the abundance of fishes at numerous islands in the Group and compare the relative effectiveness of each.

## Materials and Methods

Two methods were used to census fish.

## 1. Log-Abundance Counts

The diver swam at a constant speed along a predetermined depth contour 'sampling' a variety of habitats, and recorded on a slate the numbers of fish of each species seen during a 30 minute swim. Numbers were recorded on a $\log _{3}$ abundance scale, i.e.

| Scale | Numbers | Scale | Numbers |
| :---: | :---: | :---: | :---: |
| 1 | 1 | 5 | $10-27$ |
| 2 | $2-3$ | 6 | $28-81$ |
| 3 | $4-9$ | 7 | $>243$ |
| 4 | $10-27$ |  |  |

The method is described in greater detail by Edgar (1981).

## 2. Belt transect

A 50 m surveyor's tape was placed on the sea bed perpendicular to the depth contours of the reef. The diver swam along one side of the tape and returned along the other, recording on a slate the identity and size of each fish within an estimated band width of 5 m bordered by the tape. The method is described by Quast (1968) and can be carried out much more rapidty than the original double line transect of Brock (1954). It has been used by a number of authors, including Russell (1977) and Willan et al. (1979) in New Zealand, and gives an estimate of the numbers of fish in an area of $500 \mathrm{~m}^{2}$ covered by the census. Sale \& Douglas (1981) considered the method gave reasonably precise and repeatable results, although its precision in terms of species or numbers does not exceed about $80 \%$.

In order to compare replicate censuses at one site and censuses in different years at the same site the percent similarity (PS) index was calculated as follows: $P S=\frac{2 W}{A+B}$ where $A$ is the sum of the measures for all species in one sample, $B$ is the similar sum for all measures in the second sample, and $W$ is the sum of the lesser measures for each
species occurring in both samples. The measure used is $\log$ transformed $(n+1)$ numbers. This transformation reduces the effect of a few very abundant species which would otherwise swamp an analysis (Field \& McFarlane 1968). The measure has been used for visual census data by Sale \& Douglas (1981).

To determine if an optimal number of censuses existed, the increase in PS values and in number of species by stepwise pooling of censuses were computed for the data at Topgallant I. PS values for all possible combinations of censuses were calculated and the means and standard errors obtained. PS comparisons were between pooled censuses (from 1-5) and all censuses combined.

## Site Descriptions

## Topgallant I.

The lee of this island drops sharply to a depth of about 30 m where broken rock and sand occur. At the site studied large, irregular limestone boulders lie scattered down the slope, and bear algal assemblages dominated by Ecklonia radiata, Acrocarpia paniculata, Cystophora spp or Sargassum spp as described for Pearson I, by Shepherd \& Womersley (1971).

## Hotspot

This is an extensive submerged reef, with several peaks awash at low water Site 1 is on creviced granite bottom with high relief (to 5 m ) of blocks and boulders. Sites 2-4 are of moderate relief ( $1-2 \mathrm{~m}$ ) with numerous blocks and boulders. All sites are exposed to considerable wave energy from swell. Algal assemblages are as described for Topgallant I.

## Ward I.

Site 1 is on sloping granite bottom of low relief. Site 2 is partly rubble or boulder bottom, partly of high relief (to 3 m ) platforms, heavily undercut to form caves and overhangs. Site 3 is similar to Site 2 but with a greater proportion of low boulders. Site 1 is exposed to strong swell and Sites 2 and 3 to moderate swell, Algal assemblages are as described above.

## Pearson 1.

All sites have sloping granite bottom. Site 1 has many blocks and boulders $1-3 \mathrm{~m}$ high, Site 2 has many blocks up to 2 m high and Sites 3-6 have generally low relief with occasional boulders up to 1 m high. Wave energy from swell decreases from Site 1 (high) to 6 (low), Algal assemblages are as described above.

| Sumblitis name | Commun nam: | leedine lype | PL I |  | $\begin{gathered} \text { Non } \\ 483 \\ \text { ite } \\ 5 \end{gathered}$ | 1. | 111 11 1 | $\begin{gathered} \text { DFF } \\ \text { Site } \\ 2 \end{gathered}$ | RS 1 | 11. 11.4 Sit 1 | D 1 | 13 |  | SP) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| M ${ }^{\text {Shobaths austrah M Madeas }}$ | Eagle Ray | C |  |  | I |  |  |  |  |  |  | 1 |  |  |  |
| Cemmerbersx lincatus (Cuviel \& Valencmemes) | Swallow-tail Snapper | $p$ |  | 5 |  | 5 |  | 1 |  | 4 | 5 |  |  |  |  |
| C. Perrardi (Guemther) | Red Snapper | C |  |  | 1 | 2 | 2 | 1 |  |  |  |  |  |  |  |
| Phollortervx ivemblasus (Liwepede) | Sea Iragon | P |  | ! |  |  |  |  |  |  |  |  |  |  |  |
| Pemphers multiraduatus Kınnıager | Common Bulls-eyc | C | 5 | 5 |  | 5 | 5 | 6 |  | 5 | 6 |  |  |  |  |
|  | Cinalfirh | C' | 4 | 3 |  | 5 |  |  |  | $\geq$ |  | , | 4 |  | 1 |
| Vincentia consperso (Klunzinger) | Southeris ( irsionaliols | $\mu$ | 4 | , |  | $?$ |  |  |  |  |  |  |  |  |  |
| Dinolester lew int (Griffith) | Long F-illnad Pike | $C$ |  |  | 1 | 1 | 1 |  | 2 |  |  |  |  |  |  |
| Preadotaranx demex Valenciennex | Trevally | 0 |  |  | able |  |  |  |  |  |  |  |  |  |  |
| Enoplosas urmatus (White) | Old Wils | 0 | 4 |  |  |  | 2 | 2 |  |  |  |  |  |  |  |
| Pentaceropas recurverostris (Wichardson) | Lone-snouted Boartish | C |  |  |  |  | 2 |  |  |  |  |  |  |  |  |
| Hipoplectrodes nugrorubrum (Cubler \& Valenciennes) | Banded Sea Perch | 0 |  |  |  |  |  |  |  | 1 |  |  |  |  |  |
| (uesomeria rasor (Richardsou) | Barber Perch | $p$ | 3 | 5 |  | 5 |  |  |  | 5 | 5 | 2 | \} | 4 | § |
| Paraptestops melmagris (Peters) | Blue Devil | C |  | , | 1 | 1 | 2 | 3 |  |  |  |  |  |  |  |
| Truchinops noarlungaz (iloves | Noarlunga Hulatish | P | 6 | 5 | 5 | 6 | 6 | 6 | 6 | 6 | 6 |  |  |  |  |
| Siluginode's punctanes (Cubter \& Valentienney) | King George Whitiug | c |  | 2 |  |  |  |  |  |  |  |  |  |  |  |
| Dactlosargus urctulens (Richardson) | Sea Carp | 11 |  | 1 |  |  |  |  |  |  |  |  |  |  |  |
| Girella zebra (Richardson) | Zebratish | $\bigcirc$ | 5 | 5 | 3 | 3 | 3 | 2 | 2 | 2 | 3 | 1 |  |  | 3 |
| Kıphosur yatneyamas (Cinenthet) | Drummer | 11 |  |  |  |  |  |  | 2 |  |  |  |  |  |  |
| Scorpes dequmpinms Richardsun | Sea Sueep | P | 5 | 0 | 5 | 6 | 6 | 5 | 5 | \% | 6 |  |  |  | 5 |
| S. georgionus Cuvier \& Valenciennes | Banded Sweep | P |  |  |  |  | , |  | 1 |  |  |  |  |  |  |
| Wimulums seviow totuen Richardsoll | Moonligher | $\cdots$ |  | 2 |  | 2 |  | 1 | 1 | 2 | 3 | 2 |  |  |  |
| (helmomups muncutws (kiser) | Coralrivh | . |  |  |  |  |  | 1 |  |  | 2 |  |  |  |  |
| Purevuulu melhuturnenus (6 allenaul | Shwr Hilly | P | 4 |  |  | 3 |  |  | 3 | 5 | 4 | $\downarrow$ | $\pm$ |  |  |
| Charunemms georgiunux Cuncr | Kelplich | H | 1 |  |  |  |  |  |  |  |  |  |  |  |  |
| Detegloyhtora murieans (Ruchardson) | Stronglish | 0 |  | $\geq$ |  |  |  |  |  |  |  | 1 |  |  |  |
| Sermaducthlus whons iennesj (Whildes) | Queen Suapmer | C | 3 | 3 |  | 2 | , |  |  |  |  |  |  |  | 3 |
| Chedradath/us mgrtpen Kichathoon | Sagpie Perch | C | 3 | $+$ |  | 4 | 3 | 3 | 3 | 4 | 5 | 4 | 3 | 3 | 3 |
| Arripus kearkiamus Cusier \& Valencuenne | Tommy Rough | 1 |  |  |  |  |  |  |  | 5 |  |  |  |  |  |
| Norfoldios strutiees (Rambay \& (qilby) | Common 1 hrevelan | c |  |  | 1 |  |  |  |  |  |  |  |  |  |  |
| Purmo vrelornee (lovemher) | Staly Fon | $?$ | 4 | 4 |  | 4 | 3 | 3 | 2 | 4 | 4 | 1 |  | 1 | 7 |
| - Ophoerodus souldil (Ruchardson) | Blue Ciroper | C | 4 | 4 |  | 4 |  | 1 |  | 4 | 3 | 3 | 2 |  |  |
| Oprhulmolepis lineolatur Ciuvier \& Vulenciennes | Maoti Hraser | 0 |  |  |  |  |  |  |  |  |  | 2 | 2 |  |  |
|  | Pretly Polly | ${ }^{\circ}$ |  | 3 |  |  |  |  | ] |  |  |  |  |  |  |
| Austrolubres mutwlutws (Nackeay) | Black Spotted Wrasse | ( |  | - 1 | able |  |  |  |  |  |  |  |  |  |  |
| Piculubrus lutularms (Rishardson) | Senamortish | c | 4 | 4 |  | 4 | 2 |  | 4 | 4 | $\pm$ | 4 | 3 | 5 | 4 |
| Pseudulahrw relricus Rachardurn | Blue-Throated Wravce | C |  |  |  |  | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 |
| $\beta$ Psollaculus Rehardson | R(o) W'rasue | C |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Odax inumumelus Richardun | Herning (ale | H | 3 | 2 |  | 2 | 3 | 2 | 2 | 4 | j |  |  |  |  |
| O. ucropulus (Ruchardont | Rambawfish | 0 |  | 1 | 2 | , |  |  |  |  |  | 3 |  | 3 |  |
| Sphomochathus heddomel (fohmeton) | Birs-fuse Weed Whiting | ${ }^{\circ}$ |  |  |  |  |  |  |  |  |  |  |  | 4 |  |
| S. Suntmit (Scoll) | Sharpenosed Weed Whititg | c |  |  |  | 1 |  |  |  |  |  |  |  |  |  |
| Bigener liruwnia (Richardson) | Soins Talled Leatherjacket | () |  | c 1 | able |  |  |  |  |  |  |  |  |  |  |
| Scohinichthys kpanulatus (Shaw) | Rough l callierjacket | () |  |  |  |  |  |  |  | 1 |  |  |  |  |  |
| Penkipeha bruger (Cablenau) | Toolh Brush Learherjacker | () | 2 |  |  |  |  |  |  | 1 |  |  |  |  |  |
| Meuschembs flanolireosa Huthuns | Yollow-lined I eatherjachet | () | $\downarrow$ | 4 | 3 | 4 |  |  |  | 4 | 3 |  |  |  | 3 |
| H. walit (White) | Blue lined I citherjuchat | (1) |  |  |  |  |  |  |  |  |  | 3 | 1 | 3 |  |
| M. hippocrepis \{Quoy \& Gaimardl | Horse-shoe Leatherjacket | $(1)$ | 4 | 4 | 4 | 4 |  | 1 |  | 4 | 5 | 3 | 3 |  | 4 |
| M. venusta Huichins | Stars \& Stripes Leatherjackel | () | 3 | 1 | 3 | , |  | 2 |  | I |  | 2 |  |  |  |
| Anoplocus lemaculars (Richardions) | Humphach Bovfish | c |  |  |  |  |  |  |  | 1 | 1 |  |  |  |  |
| Aracona aurta (Shaw) | Shaw'4 Cowlith | ( |  |  |  |  |  |  |  | 1 |  | 1 |  |  |  |
| Ome'gophoria cranopunctofo (Hardy \& Huthime) | Hlue Spoted Puffer | 0 |  | 2 |  |  |  |  |  |  |  |  | 1 |  |  |
|  | Clingtish | c. |  |  |  | 1 |  |  |  |  |  |  | 1 |  |  |
| Number of spectes,Deplh (m) |  |  | 23 | 327 | 30 | 28 | 16 | 16 | 15 | 25 | 18 |  | 1912 | 811 |  |
|  |  |  | 8 | 8 |  | 8 | 8 | 8 | 6 | 6 | 12 | 12 | 12 | 12 |

Dotalahrus anranhack (C antlernau)
Premborws miciwhlus (Alackeay)
Pesululethem letricus Rucharduan

* prollaculus Richardson

Odar crumbmelus hichardan
O. ucropulter (Rychardont

Siphomocnathus heddomel (fohmeton)
S. Sunthur (Scole)

Brgener liruwnin (Richardson)
Sonthiththys Rranulames (Shaw)
Femaneha binger (Cawlenau)
M. zulit (White)
M. hippocrepis \{Quoy \& Gaimard

Anoulocus lentucular
dracong aurita thase
argophora cyanopunctofo (Thardy \& Huthime

Number of specles
Depih (m)

## Finders 1.

The sites investigated by log abundance coum here were close together. The bottom is relatlvely level wilh patches of sand and a lew lange ( $3-4 \mathrm{~m}$ ), overlapping blocks forming caves. Wave exposure is fow relative to the other sites, The algal assemblages are dominated by Cystophora spp and Sargassum spp.

## Resulls:

A species lish, with common names, of fish obscrved on the varinus censuses is given in Table 1 , together whith the results of the $\log$ abundance counts for various sites. One species not seen by Kuitet (1983) L.e. Dactylosurgus arcridens (Richardson) was recorded at Pearson 1. The greatest number of species sighted durlag half hout periods were recorded at Pearsor I and the fish faunas at the Hotspot were tound to be the Jeast diverse. Whether changes in diversity are a function of topographic complexity, water movement, algal standing crop, or a combination of these and other factors is impossible to determite without additional censuses.
The belt transect counts of the listr species, and their mean estimated lenglhs, are given in 'lables

2-6 for Topgallant I., Hotspot, Ward I., and Pearson 1. respectively. Replicate censuses of the abundances and size structures of fish species observed along a single bett transect line show close correspondence, regardless of whether they were carried out by difierent divers or the same diver (PS = 0.72 for census on 10.iv. 1983 al Topgallant 1, (Table 2), and PS $=0.74$ at Site 2 and 0.77 at Site 3. Ward 1. (Table 4); $\mathrm{PS}=0.71$ at Site 1 and 0.65 at Site 4, Holspot (Table 3)). Even I'S values at the same site letween years were guite high (mean US -0.66 s.c. $=0.06$ for all between year comparisons of censuses at Topgallant I),

The increase in cumulative number of species and in PS values by siepwise pooling of censuses (Fig, 2) shows in each case even curves without brcakpoints. Amer the first 2 or 3 censuses species accumulate more or less everily by the addition of chance sighaings of mostly individual wandering species. Futther sampling would presumably lead to levelling out of these curves.

The numbers of fish species sighled during the uclt transects were significaruly correlated with the depth range, and hence gradient, of the transects (Fig. 3, $r=0.56 ; \Gamma<0.05$ ). In this analysis. whenever a transect was duplicated the mean


| Date Surveyed <br> Deyilit Range Diyer | $\begin{gathered} 1 / 4 / 82 \\ 5-17 \mathrm{sin} \\ \mathrm{KH} \\ 17 \mathrm{x}(\mathrm{~cm}) \end{gathered}$ |  | $\begin{gathered} 29 / 3 / 82 \\ 5-17 \mathrm{~m} \\ \mathrm{k} \mathrm{~B} \\ 1 \quad \text { x(cm) } \end{gathered}$ |  | $\begin{aligned} & 10 / 4 / 83 \\ & 6-17 \mathrm{HI} \\ & 65 \\ & 11.8(\mathrm{~cm}) \end{aligned}$ |  | $\begin{aligned} & 10 / 4 / 83 \\ & 6-17111 \\ & \mathrm{~KB} \\ & 0 \text { 4/cri) } \end{aligned}$ |  | $\begin{gathered} 21,4 / 85 \\ 6-17101 \\ K B \\ n \quad(\mathrm{~cm}) \end{gathered}$ |  | $\begin{aligned} & 21 / 4 / 85 \\ & 6-17 \mathrm{~mm} \\ & \mathrm{k}^{\prime} 13 \\ & \text { in } \mathrm{x}(\mathrm{ctrm}) \end{aligned}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Censroberver gerrurdi | 2 | 25 | 4 | 24 | 2 | 30 |  |  | 7 | 28 | 2 | 35. |
| Pempheris multimadiarus | 1 | 8 | 1 | 10 |  |  | 1 | 15 | 5 | 12 | 155 | 2 |
| 1 P. Alunsingeri | 11 | 111 | 1 | 15 |  |  |  |  |  |  |  |  |
| Upenththh's wammeid | 2 | 8 |  |  |  |  |  |  |  |  |  |  |
| Dincolestey lewlar |  |  | 1 | 15 |  |  |  |  |  |  |  |  |
| Cucsiopenea lepuidoplera | 1 | 111 | 4 | 15 | 5 | $1)$ | 3 | 7 | 38 | 12 | 42 | 5 |
| Pitoplosmps meleagris |  |  |  |  |  |  |  |  |  |  | 1 | 25 |
| Trachinons nourlunsue | 9 | H | 63 | 10 | Lss | 8 | 241 | 8 | y 10 | 7 | 150 | 6 |
| Círella ardora | 9 | 26 | S | 21 | 2 | 25 | 4 | 8 | 1 r | 23 | 11 | 23 |
| кyphrases sydreyanus |  |  |  |  |  |  |  |  |  |  | 1 | 25 |
| Scorpis nevaipoinnts. | 10 | 26 | 10 | 18 | 6 | 19 | 20 | 11 | 13 | 25 | 12 | 18 |
| $V$ Incrumm sex/asciarum | 1 | 25 | 3 | 25 | 1 | 23 |  |  |  |  | 3 | 20 |
| Chetmenopas truncalus |  |  | 2 | 20 | 2 | 21 |  |  |  |  | 3 | 15 |
| Dicriophhora nigricans | , | 30 | 2 | $3 \times$ |  |  |  |  |  |  |  |  |
|  | 3 | 37 |  | 38 |  |  |  |  |  |  | 3 | 711 |
| Chellmaderatus nigripes | 2 | 318 | 1 | 25 | 2 | 18 | 4 | 27 | 5 | 75 | 4 | 27 |
| Parma vicioriue | 2 | 18 | 5 | 15 | 3 | 17 | 3 | 19 | 9 | 18 | 4 | 18 |
| Aichmeradnes youldii | 1 | 51 |  | 51 | 1 | $31)$ | 4 | 51 | 2 | 43 | 1 | 50 |
|  | ! | 15 |  |  |  |  |  |  |  |  |  |  |
| Amstroluthes maswlams |  |  |  |  |  |  | $\geq$ |  |  |  |  |  |
| Piepiluluray Putichulus | 2 | 18 | 1 | 20 | 2 | 11 |  |  | 1 | 10 | 2 |  |
| Psentudetriss letricres: | K | 17 | 16 | 19 | 21. |  | 2! |  | 12 | 24 | 10 | 25 |
| Odiax cyamanmelar. |  |  | 1 | 311 |  |  |  |  |  | 311 | 1 |  |
| 0. ucropultes |  |  |  |  |  |  |  |  |  | 15 |  |  |
| Syphomens mathes beuldomad | 4 | 15 |  |  |  |  |  |  |  |  |  |  |
| S canminior |  |  |  |  | 1 |  |  |  |  |  |  |  |
| Meuschenia ylovrlimernas | 2 |  | 1 | 311 |  |  |  |  | 4 | $3!$ | 4 | 31 |
| 11. hippocrontis | 2 | 28 | 1 | 311 | 1 | 30 | 2 | 30 |  |  |  |  |
| NUAIBER OU SPECIES | 21 |  | 20 |  | 14 |  | 12 |  | 15 |  | 18 |  |

Table 3. Recults of helf tronsect censuses at Hotspol. $n=$ number of fish sighted; $x=$ estimated $\cdot$ mean length.


TAble 4. Results of beft transect censuses at Ward $I$. $n=n u m b e r$ of fisli sighted; $\lambda$-estimated mean length.

| Site Number |  | 4 |  | 2 |  | 2 |  | 3 |  | 3 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Date Surveyed |  | 3/82 |  | 4/83 |  | 4/83 |  | 4/83 |  | 4/83 |
| Depth Range |  | 27 m |  | 12 m |  | 12 m |  | 2 m |  | 2 m |
| Diver |  |  |  | B |  | GE |  | B |  |  |
|  | $n$ | x(cm) | $n$ | $x(\mathrm{~cm})$ | $\pi$ | $x(\mathrm{crn})$ | $\pi$ | x(cm) | 17 | ( cm ) |
| Myliobatis australis |  |  | 1 | 230 | 1 | 150 | 1 | 230 |  |  |
| Pempheris multiradiatus |  |  | 60 | 8 | 25 | 13 | 15 | 13 | 24 | 13 |
| Upeneicthys vamingii |  |  | 1 | 15 | 2 | 13 | 2 | 15 | 2 | 19 |
| Caesioperca rosor | 1 | 20 | 2 | 18 | 1 | 20 | 1 | 15 |  |  |
| Paraplesions meleagris |  |  | I | 20 |  |  |  |  |  |  |
| Trachinops nourlungae- |  |  | 1 | 8 | 9 | 5 |  |  |  |  |
| Girella zebra |  |  |  |  |  |  | 1 | 25 |  |  |
| Scornis aequipinnis | 40 | 20 | 11 | 15 | 7 | 17 | 1 | 15 |  |  |
| Vinculum sexfasciarum |  |  | 2 | 6 |  |  |  |  |  |  |
| Parequula meibournersis | 3 | 10 | 2 | 9 | 8 | 11 | 13 | 9 | 13 | 13 |
| Cheilodacylus nigrij)es |  |  | 5 | 22 | 4 | 34 | 2 | 25 | 3 | 29 |
| Parma victorive |  |  | 5 | 15 | 3 | 21 | 2 | 15 | , | 25 |
| Achoerodus gouldii | 2 | 47 |  | 37 | 3 | 4 | 5 | 42 | 3 | 42 |
| Pictilabrus lasiclavius | 1 | 20 | 10 | 19 | 12 | 20 | 11 | 21 | 9 | 22 |
| Pseudolabrus betricus |  |  | 14 | 21 | 13 | 25 | 21 | 19 | 12 | 25 |
| Odar cyanmmelas |  |  | 3 | 27 | , | 28 | 2 | 28 | 2 | 33 |
| Siphonognathus beddomei |  |  |  |  | 1 | 10 |  |  |  |  |
| Bigener brownig |  |  |  |  | 2 | 25 | I | 30 |  |  |
| Penicipella villiger |  |  |  |  |  |  |  |  | 1 | 25 |
| Afeuschenia hippocrepis |  |  |  |  |  |  | 2 | 24 | 1 | 30 |
| NLJMBER OF SPECIES |  | 5 |  | 15 |  | 15 |  | 15 |  | 11 |

number of fish was used to avoid pseudoreplication (see Hurlburf, 1984). The steeper transects showed greater spectes richness, presumably because they incorporated overhanging rocks, and hence cave dwelling fish species (e.g. Pempheris multiradiatus,

Pempheris klunzingeri, Centroberyx gerrurdi), and because habitats change relatively rapidly with depth. However, an unusually low fish species richness was found along a moderately steep transect at Site 1. Ward 1. (see lable 4 and Fig. 3).


Fig. 2. Percentage similarity and mean number of species between pooled censuses (from 1-5) and all censuses combined for belt transect data at Topgallant I. Vertical bars are standard errors.

This transect was the only one carried out in water depths greater than 20 m , suggesting that deeper environments may be more homogeneous than those in shallow water.

Unlike the log abundance counts, there are only minor differences in the fish species richness of the belt transects between different localities in the Investigator Group (Table 6).

## Discussion

The abundance of large fishes, such as the blue groper (Achoerodus gouldii) which was recorded in


1ig. 3. Plot of number of species against depth range of the belt transect for all sites.

15 out of 18 belt transects, shows that these reefs are rarely visited by spear-fishermen. These data are therefore a record of fish abundances in virtually unexploited conditions.

The two census methods produce quite different information about reef fish assemblages. The log abundance count provides a quick estimate of the relative abundances of the major fish species in an

Tabit 5. Resufts of belt trunsect cemsuses at Pearson l. n-number of lish sighted; $x$ estimated mean length.


 medinids. tidi= no Llata.

|  | Bell 'Trarseel | $\log$ abundance coum ( 311 กห่าs) |
| :---: | :---: | :---: |
| Topgallant |  |  |
| Islands | 16.5 (4.1) | $n$ d. |
| Hinspar | 9.6 (5.8) | $13.7(4.2)$ |
| Ward lslands | $12.2(4.4)$ | $21.5(4,9)$ |
| Pearson Islinnds | $12.0(2,6)$ | 27.0 (2.9) |
| RTinders Island | ก.d. | 15.7 (11.6) |

area, arod is thus usefill for comparine the fish communities at different localitics.

Log abundance counls give larger species lists bccause the diver covers a larger steat and axan sample more hathitals. The area searched by a diver (assunning a bund width of 5 nl is searched) was found by Shepherd (1985) to be $103 \mathrm{~m}^{2}$ mini 1 . eiving ai mean coverage of $3090 \mathrm{~m}^{2}$ in 30 minules, compared with $500 \mathrm{~m}^{2}$ by a bell transect wheh takes more than fwice that dime

A|though the belt transect method shows signiticanl differences in fish specjes richness between sites with differeat botom gradients, is tells lintle about overall diversity difietences between sites. Belt tronsetis are useful nevertheless because they provide quantitative informasion abour lïsh ahumdanses and size strucfures which can be used for estimating the fish standing stock (sce Willan ef af, 1y79). Sucin estimates, however, are approximate because the diver selies on visual estmates of fish length and transect width. Shoreaver, some fïsh are ateracted oo itie diser whilits ohhers are repelled, and the abundances of achive fish may be over-entimated because divers the
adjacen sranseers could each tecorad a fish passing perpendicular to the transect in front of them. Subject to these inaccuracies, the belt iransect method is ofien the only practical method for delemmining fisti standing slock (Quist 1968). The close correspondence between. the size and abundance estimates of two divers in 'this survey (Table 4) indicars that the method is reasonably accurate.

Two or three neplicate belt transects will generally be needed because of the patchy distribution al reef fish and the lintitatons inherent in themethod. Like Sale \& Douglas (1981), we lound that a single census was inadequatc, with only a gradual improvement with replicate censusing, There is no obvious "breakpoint" which might be used to argue for an optimal number of replicate censuses.

The choice between the iwn census mathods is therefore one al purposé. A log aburdance coun will provide more information about the fish diversity in much less cinne and is therefore arore suited to preliminary stirveys, particularly wher carried out at a number oll slilferent deptios. If an recurate census of fish in a given labibar is requined for standing stock infiormation, or if a single site is to be censused over aperlod ol thome for dererntine seasonal or anmual variation, then the belt fransect method is indisated.

## Acknowledgments

We are eraterul to the skipper Mr M. Leect and crew of the Cape Adieu for their thoughofful attention to diters, and on the Fishine Industry Research Trust Account for martial fundine: Mr R. Kuiser gave advice onl some species determinations.

## References

Brack. Y, E. (1954) A prehminary sanorl sp at method of estimatine reet lisht Dnpulannos. I Milall Afonusermem 18, 297-318.
Eurar. Cr. J. (1981) An initial survey is porcmial marine reserves in Tammain. Now. darke bildt. Sermice Oec. $1240.4-87$
(1984) Cienmal festmics of the ecology and biogengesphy at Tasmarian sutridal focky shote cammumilice Rup) (Tose id. Soc. Fasm. 118, 173-186
FIIIL, J. G- \& MRFPHAANL, G. (1968) Numerica!
 analysis ur reck shore samples in False Bay, Sonfo Alisia, Zuof, AFr. I, 119-137.
 of eculogical reded experimerus. Fenk. memoger, 54, 187-211.
 Suuth Alsurelia ( $1983 / 4$ ) I. Shure ant hogat crents. Fish. Res: Pope, Redy. fish, 15. oldad.\% No. 12. 17 pm
 Auntration $(1,533 / 4)$ If. Au- ralian skimbiving contention

 Cimon in Bass Sisait. Vict. Nat. 48, 184-7.
(1983) An anmblated list of fishes of the
 Dept Fish ps dust. Nis. T. 12 np .
 (Chromis fiypsistepis) and the Spotted stingased (Urolophas gigus) liom Tashaman materm wieh st
 Strait. Tas. Nut 59, 512.
QUNST. J. C. (1968) Lstimates of the mopulazions and the
 Bull. 139, 57-79.
Rusobll, B, C. (1977) Ponuation ind suading trop thrimates for rocky reef lishey of now chateril Nem fenlards $N$ / J. Atue Fireshb. Res. 11, 23-36.



Sowfin-R13, S.A. (1985) Power and efficiemy of a rescarth dires iththa deseripsiont of a sapid underwates meaterime gatige: theyr nse in meatsuring reatuiternt
and density of an abalone population. In C. T. Mitchell (Ed.) "Diving for Science ... 85" pp. 263-272. (American Academy of Underwater Science, La Jolla). \& Womersley, H. B. S. (1971) Pearson Island Expedition 1969-7. The sub-tidal ecology of benthic algae. Trans. R. Soc. S. Aust. 95, 155-167.

Willan, R. C., Dollimore, J. M. \& Nicholson, J.
(1979) A survey of fish populations at Karikari Peninsula, Northland, by SCUBA diving. N.Z. J. Mar. Freshw. Res. 13, 447-458.


[^0]:    - Department oll lijsheries, 135 Pirje St, Adelaide, S. Aust. 5000.
    $\ddagger$ CSIRO P.O. Box 20, North Beach, W.A. 6020

